A Comparison of Precipitation Downscaling Procedures to Guide Studies of Climate Change Impacts on Flooding and Water Resources

Location: Southwest United States
Sponsors: Department of the Interior, Bureau of Reclamation
PI/Co-PIs: Dr. Eylon Shamir (HRC)
Collaborators: Bureau of Reclamation


In relatively small basins with arid climate, rainfall characteristics are highly variable and streamflow is tightly associated with the nuances of the rainfall temporal and spatial characteristics. Commonly used methods for impact assessment studies of the projected future climate on the local hydrologic conditions were developed and tested mainly in large river basins. However, in recent years, the Bureau of Reclamation (BoR) and other agencies have been engaged in climate impact assessments in smaller river basins and local rural communities. The existing methods and datasets that were developed for larger watersheds may not be adequate for arid ephemeral river basins that are often the prevailing landscape of these rural communities. The objective of this research, which is conducted in two arid watersheds in Arizona (i.e. the Upper Santa Cruz River watershed and the Bill Williams River watershed) are to: 1) evaluate the suitability of various global climate models downscaling methods to produce future projections of precipitation; 2) develop a test to decide on the preferred procedure for a given type of study; and 3) quantify the impact of each method on the BoR planning activities.

This is a collaborative project with Dr. Eve Halper from BoR Phoenix Area Office. The project was funded by the BoR Science and Technology Grant Program under a cooperative agreement between HRC and the BoR Lower Colorado Region (Agreement # R16AC00024).